massa gas yang keluar dari tabung
Buretdigunakan untuk mengukur volume cairan yang keluar seperti halnya pipet. Buret terutama digunakan untuk titrasi. adalah sebuah tabung yang terbuat dari kaca atau plastic khusus yang dapat menahan perubahan temperature dan tahan terhadap reaksi kimia.Tabung Reaksi terdiri dari berbagai jenis dan ukuran,ada yang memiliki penutup pada
Kebakaranyang dipicu kebocoran gas elpiji terjadi di Jalan Bukit Berbunga, Desa Sidomulyo, Kecamatan Batu, Kota Batu, kemarin siang (5/8) siang. Kebakaran itu meludeskan sebuah kios tempe goreng dan seluruh isinya di tepi jalan. Termasuk uang tunai yang ada di dalam laci. Kebakaran itu bermula saat pekerja kios bernama Intan Apriliana hendak menggoreng 4 porsi tempe khas Banyumas untuk Jumat
Dua kapal, KM Samudra 5 dan KM Samudra Jaya yang mengangkut ribuan tabung gas elpiji untuk kebutuhan masyarakat Karimun tertahan di pelabuhan Gentong, Tanjunguban, Kecamatan Bintan Utara, Bintan, sejak Kamis (4/3/2021). Hal ini dikarenakan belum keluarnya surat persetujuan berlayar (SPB) kapal yang dikeluarkan Kantor Unit Penyelenggara Pelabuhan (UPP) Syahbandar Klas I
Tabungdengan volume 1 liter mempunyai lubang yang memungkinkan gas keluar dari tabung. Mula-mula suhu udara 27°C, kemudian tabung dipanaskan hingga suhunya 177°C. Perbandingan antara massa gas yang keluar dari tabung dan massa awalnya adalah . 1 : 2 1 : 3 1 : 27 1 : 187 27 : 187
Sebuahtabung yang bervolume 1liter mempunyai lubang yang memungkinkan udara keluar dari tabung. mula2 suhu udara dalam tabung 27°C tabung di panaskan hingga suhunya 127°C perbandinga masa dan gas yang keluar dari tabung dan masa awalnya adalah ??. Question from @cucusimbah - Sekolah Menengah Atas - Fisika
Mann Meiner Freundin Flirtet Mit Mir. Post Views 1,640 Pada kali ini menyajikan soal dan pembahasan tentang teori kinetik gas materi fisika SMA. Dapatkan akses ke soal dan pembahasan tentang teori kinetik gas yang dikemas dengan jelas dan mudah dipahami. Pelajari tentang konsep-konsep penting seperti distribusi kecepatan molekul, tekanan gas, dan energi kinetik. Perbanyak latihan soal untuk menguji pemahaman Anda dan persiapkan diri untuk ujian atau kompetisi ilmiah dengan baik. Berikut ini adalah beberapa soal dan pembahasan tentang teori kinetik gas Apa yang dimaksud dengan teori kinetika gas? Teori kinetika gas adalah teori yang menjelaskan perilaku gas dari segi kinetika, yaitu perilaku partikel-partikel yang membentuk gas. Teori ini dikembangkan oleh Maxwell dan Boltzmann pada abad ke-19 dan menjelaskan fenomena seperti tekanan, suhu, dan volume gas dari perspektif kinetik partikel. Teori ini juga menjelaskan konsep seperti distribusi kecepatan partikel gas dan jumlah molekul dalam suatu volume. Bagaimana teori kinetik gas menjelaskan tekanan gas? Teori kinetik gas menyatakan bahwa tekanan gas merupakan hasil dari molekul-molekul gas yang terus-menerus menghantam dinding wadah yang menampung gas tersebut. Jika molekul-molekul gas bergerak dengan kecepatan yang lebih tinggi, maka tekanan yang terjadi juga akan lebih tinggi. Jelaskan asumsi apa saja yang digunakan pada teori kinetik gas? Beberapa asumsi yang digunakan pada teori kinetika gas adalah Partikel gas adalah partikel yang tidak saling berinteraksi secara langsung. Partikel gas adalah partikel yang bergerak secara acak dan memiliki distribusi kecepatan yang berbeda. Partikel gas memiliki energi kinetik yang sama dalam suatu sistem yang sama. Partikel gas tidak memiliki ukuran atau bentuk yang spesifik. Partikel gas tidak memiliki gaya tarik atau tolak antara satu sama lain. Volume yang ditempati oleh partikel gas sangat kecil dibandingkan dengan volume sistem secara keseluruhan. Teori kinetika gas tidak memperhitungkan efek kuantum. Teori ini hanya berlaku untuk gas ideal, yang tidak mengalami efek intermolekuler atau interaksi partikel. Bagaimana teori kinetik gas menjelaskan hukum ideal gas? Teori kinetik gas menjelaskan hukum ideal gas dengan mengasumsikan bahwa molekul-molekul gas tidak memiliki interaksi satu sama lain, sehingga tidak ada gaya tarik-menarik atau tolak-menolak antar molekul. Hukum ideal gas dapat dinyatakan dalam persamaan PV = nRT, di mana P adalah tekanan, V adalah volume, n adalah jumlah mol gas, R adalah konstanta gas, dan T adalah temperatur dalam kelvin. Apa saja penerapan teori kinetik gas dalam kehidupan sehari hari? Beberapa penerapan teori kinetik gas dalam kehidupan sehari-hari adalah Pembuatan kompor gas teori kinetik gas digunakan untuk memahami bagaimana gas digunakan sebagai sumber energi untuk memasak, dan bagaimana aliran gas dikontrol untuk mencapai tingkat yang diinginkan dari panas yang dihasilkan. Sistem pendingin udara teori kinetik gas digunakan untuk memahami bagaimana gas digunakan sebagai refrigeran dalam sistem pendingin udara, dan bagaimana perubahan tekanan dan suhu digunakan untuk mengubah gas menjadi cairan dan kembali menjadi gas. Pembuatan roket teori kinetik gas digunakan dalam desain roket untuk memahami bagaimana gas dibakar dan diekspansi dari tanpa keluar melalui nozzle untuk menghasilkan dorongan. Pembuatan bahan kimia Teori kinetik gas digunakan dalam proses pembuatan bahan kimia untuk menentukan tingkat reaksi, kondisi operasi yang optimal dan produk yang dihasilkan. Pembuatan lampu Teori kinetik gas digunakan dalam pembuatan lampu untuk memahami bagaimana gas digunakan sebagai bahan bakar dan bagaimana perubahan tekanan dan suhu digunakan untuk menghasilkan cahaya. Soal Teori Kinetik Gas Nomor 1Sejumlah gas ideal dipanaskan dalam sebuah silinder berpenghisap pada tekanan tetap, maka1 volume gas bertambah2 tekanan gas konstan3 volume dan temperatur berbanding lurus4 massa gas konstanPernyataan yang benar adalah nomor ….A. 1, 2, dan 3B. 1 dan 3C. 2 dan 4D. 4 sajaE. semua benar Jawaban E Soal Nomor 2Dua mol gas N2 pada suhu 27 oC memiliki tekanan 1 atm. Volume gas tersebut adalah ….A. 50 dm3B. 40 dm3C. 30 dm3D. 20 dm3E. 10 dm3 Pembahasan Diketahui P = 1 atm = 1 x 105 N/mn = 2 molR = 8,314 J/mol KT=27 oC+273=300 K Ditanyakan V = ? \begin{align*} PV &= nRT \\ 1\cdot 10^5 \cdot V &= 2\cdot 8,314 \cdot 300 \\ 1\cdot 10^5 \cdot V &= 2\cdot 8,314 \cdot 300 \\ 1\cdot 10^5 \cdot V &= \\ V &= 4,988\cdot 10^{-2} \quad \textrm{m}^3 \\ &= 49,88 \quad \textrm{dm}^3 \\ &\approx 50 \quad \textrm{dm}^3 \end{align*} Jawaban A Soal dan pembahasan teori kinetik gas kelas 11 Soal Nomor 3Kelajuan suatu partikel gas ideal pada suhu T Kelvin adalah v. Jika suhu diturunkan hingga menjadi $\frac{1}{4}$T, kejauannya akan menjadi ….A. $\frac{1}{4}$vB. $\frac{1}{2}$vC. vD. 2vE. 4v Pembahasan \begin{align*} \frac{v}{v’}&= \sqrt{\frac{T}{T’}} \\ \frac{v}{v’}&= \sqrt{\frac{T}{\frac{1}{4}T}} \\ \frac{v}{v’}&= \sqrt{4} \\ \frac{v}{v’}&= 2 \\ v’ &= \frac{1}{2}v \end{align*} Jawaban B Soal Nomor 4Gas ideal menempati sebuah tabung gas yang bocor dengan volume 0,6 m3. Gas tersebut tidak keluar dari tabung karena suhu dan tekanannya sama dengan suhu dan tekanan lingkungan. Jika gas dalam tabung dipanaskan dari suhu 27 oC hingga 77 oC, berapakah volume gas yang keluar dari dalam tabung?A. 0,5 m3B. 0,4 m3C. 0,3 m3D. 0,2 m3E. 0,1 m3 Pembahasan Diketahui V = 0,6 m3T = 27 oC + 273 = 300 KT’ = 77 oC + 273 = 350 KP = P’ Ditanya Vyang keluar = V’ – V \begin{align*} \frac{PV}{T}&= \frac{P’V’}{T’} \\ \frac{V}{T}&= \frac{V’}{T’} \\ \frac{0,6}{300}&= \frac{V’}{350} \\ V’&= 0,7 \quad \textrm{m}^3 \end{align*} Volume gas yang keluar Vyang keluar = V’ – V = 0,7 – 0,6 = 0,1 m3 Jawaban E Soal pembahasan teori kinetik gas Soal Nomor 5Sepuluh liter gas ideal bersuhu 127 oC mempunyai tekanan 110,4 Pa. Bila k = 1,38 x 10-23 J/K, maka banyaknya partikel gas adalah ….A. 2,0 x 1020B. 2,0 x 1019C. 2,0 x 1018D. 1,8 x 1020E. 1,8 x 1018 Pembahasan Diketahui V = 10 liter = 10 x 10-3 m3T = 127 oC + 273 = 400 KP = 110,4 Pa = 110,4 N/m2 Ditanya N? \begin{align*} PV&= NkT \\ 110,4\cdot 10\cdot 10^{-3}&= N\cdot 1,38^{-23} \cdot 400 \\ 1,104 &= 552 \cdot 10^{-23} N \\ N &= 0,002 \cdot 10^{23} \\ &= 2,0 \times 10^{20} \end{align*} Soal Nomor 6Jika konstanta Boltzmann = 1,38 x 10-23 J/K, maka energi kinetik sebuah atom gas helium pada suhu 27 oC adalah ….A. 2,07 x 10-21 JB. 4,14 x 10-21 JC. 5,59 x 10-21 JD. 6,21 x 10-21 JE. 12,42 x 10-21 J Pembahasan Diketahui T = 27 oC + 273 = 300 Kk = 1,38 x 10-23 J/K Ditanyakan Ek = ? \begin{align*} Ek &= \frac{3}{2}kT \\ &= \frac{3}{2}\cdot 1,38\cdot 10^{-23}\cdot 300 \\ &=621\cdot 10^{-23} \quad \textrm{J} \\ &=6,21\cdot 10^{-21} \quad \textrm{J} \end{align*} Jawaban D Soal dan pembahasan teori kinetik gas ideal Soal Nomor 8Suatu gas ideal menempati volume 100 cm3 pada suhu 0 oC dan tekanan 1 atm. Bila suhunya menjadi 50 oC sedangkan tekanan menjadi 2 atm, volume gas menjadi ….A. 118,3 cm3B. 84,5 cm3C. 59,2 cm3D. 45,5 cm3E. 38,4 cm3 Pembahasan Diketahui T1 = 0 oC + 273 = 273 KT2 = 50 oC + 273 = 323 KP1 = 1 atmP2 = 2 atmV1 = 100 cm3 Ditanyakan V2 = ? \begin{align*} \frac{P_1V_1}{T_1}&= \frac{P_2V_2}{T_2} \\ \frac{1 \cdot 100}{273}&= \frac{2\cdot V_2}{323} \\ V_2&= \frac{323\cdot 100}{2\cdot 273} \\ V_2&= 59,2 \quad \textrm{cm}^3 \end{align*} Jawaban C Contoh soal dan pembahasan tentang teori kinetik gas Soal Nomor 9Massa sebuah molekul nitrogen adalah empat belas kali massa sebuah molekul hidrogen. Molekul nitrogen pada suhu 294 K mempunyai kecepatan rata-rata yang sama dengan molekul hidrogen pada suhu ….A. 10,5 KB. 21 KC. 41,16 KD. 42 KE. 205,8 K Pembahasan \begin{align*} v_{N_2}&= v_{H_2} \\ \sqrt{\frac{3RT_{N_2}}{Mr_{N_2}}}&= \sqrt{\frac{3RT_{H_2}}{Mr_{H_2}}} \\ \sqrt{\frac{T_{N_2}}{14Mr_{H_2}}}&= \sqrt{\frac{T_{H_2}}{Mr_{H_2}}} \\ \frac{294}{14}&=\frac{T_{H_2}}{1} \\ T_{H_2}&= 21 \quad \textrm{K} \end{align*} Jawaban B Soal Nomor 10Energi kinetik gas ideal merupakan fungsi dari ….A. suhuB. volumeC. tekanan dan suhuD. volume dan suhuE. volume dan tekanan Pembahasan $Ek = \frac{3}{2}kT$ Ek = energi kinetik Jk = tetapan Boltzmann = 1,38 x 10-23 J/KT = suhu K Jadi energi kinetik tergantung pada suhu. Jawaban A Soal dan pembahasan teori kinetik gas Soal Nomor 11Gas dalam ruang tertutup dengan suhu 42 oC dan tekanan 7 atm memiliki volume 8 liter. Setelah gas dipanaskan sampai 87 oC, ternyata tekanan gas naik sebesar 1 atm. Volume gas sekarang ….A. berkurang 20%B. berkurangC. tetapD. bertambah 12%E. bertambah 20% Pembahasan Diketahui T = 42 oC + 273 = 315 KT’ = 87 oC + 273 = 360 KP = 7 atmP’ = 8 atmV = 8 liter Ditanyakan V’ = ? \begin{align*} \frac{PV}{T}&= \frac{P’V’}{T’} \\ \frac{7 \cdot 8}{315}&= \frac{8\cdot V’}{360} \\ \frac{7 }{21}&= \frac{V’}{24} \\ V’&= 8 \quad \textrm{liter} \end{align*} Karena V = V’ = 8 liter, maka volume gas sekarang tetap. Jawaban C Soal Nomor 12Sebanyak 3 mol gas ideal menempati ruang tertutup yang volumenya 1 liter dan bersuhu 27 oC. Jika tetapan gas umum 8,3 J/mol K, besar tekanan gas tersebut adalah ….A. 7,47 x 106 PaB. 7,47 x 109 PaC. 7,47 x 1011 PaD. 7,47 x 1012 PaE. 7,47 x 1013 Pa Pembahasan Diketahui n = 3 molV = 1 liter = 1 dm3 = 1 x 10-3 m3T = 27 oC + 273 = 300 KR = 8,3 J/mol K Ditanyakan P = ? \begin{align*} PV &= nRT \\ P \cdot 1\cdot 10^{-3} &= 3\cdot 8,3 \cdot 300 \\ P \cdot 1\cdot 10^{-3} &= 7470 \\ P &=7470 \cdot 10^3 \\ P&=7,47\cdot 10^6 \quad \textrm{Pa} \end{align*} Jawaban A
Sebuah tabung yang volumenya 1 liter mempunyai lubang yang memungkinkan udara keluar dari tabung. Mula-mula suhu udara dalam tabung 27°C. Tabung dipanaskan hingga suhunya 127°C. Berapa perbandingan antara massa gas yang keluar dari tabung dan massa awalnya?PembahasanDiketahui V = 1 liter T1 = 27°C + 273 = 300K T2 = 127°C + 273 = 400KDitanya m2 m1 = …. ?DijawabMenurut gas ideal, perubahan gas memenuhiTekanan dan volume konstan, makaJadi massa awalnya ¼ m1, sehingga perbandingan massa yang keluar dari tabung dengan massa awalnya adalah ¼ m1 m1 = 1 lupa komentar & sarannyaEmail nanangnurulhidayat
Kelas 11 SMATeori Kinetik GasPersamaan Keadaan Gas IdealSebuah tabung yang volumenya 1 liter mempunyai lubang yang memungkinkan udara keluar dari tabung. Mula-mula suhu udara tabung 27C. Tabung dipanaskan hingga suhunya 127C. Perbandingan antara massa gas yang keluar dari tabung dan massa awalnya adalah ....Persamaan Keadaan Gas IdealHukum Boyle-Gay LussacTeori Kinetik GasTermodinamikaFisikaRekomendasi video solusi lainnya0137Sejumlah gas ideal berada di dalam ruangan tertutup mula-...0222Sebuah tabung dengan volume 8 l bertekanan 48 atm bersuhu...0228Massa jenis gas nitrogen pada suhu 0 C dan tekanan 1 a...Teks videoHalo coffee Friends jika kita melihat hal seperti ini Pak sekitar sungai Bali di sini persamaan gas ideal jadi pada gas ideal di sini berlaku per sebuah persamaan P dikali p = n dikali dikali t dengan P adalah tekanan gas P adalah volumenya n adalah jumlah mol R adalah tetapan gas ideal di sini tetapan gas ideal yaitu 8,314 satuan adalah joule per mol k t adalah suhu mutlaknya Enggak di sini untuk Mall atau n jumlah mol bisa dicari dengan cara massa bagi dengan MR nah disini kita. Ubahlah suruh saya makan kita dapat untuk P dikali P = Mol yang menjadi m per s m r * r dikali dengan t massa dan suhu kita pindahkan ke arah kiri maka kita dapat di sini P dikali V per m dikali t = r m r nilai r adalah tetapan gas sudah pasti tetap dan MPR karena di sini gas yang mengalir adalah gas yang sama maka Mrs sudah pasti sama maka bisa kita asumsikan di sini ke p x p per m dikali t = konstan karena RM Reni sama Nah langsung saja kita gunakan persamaan ini untuk mengerjakan soal yang ada di sini sebuah tabung yang volumenya 1 l kita catat volumenya 1 liter mempunyai lubang yang memungkinkan udara keluar dari tabung mula-mula suhu udara tabung 27 derajat Celcius berarti T1 = 27 derajat Celcius kemudian dipanaskan hingga 127 derajat Celcius T2 = 127 derajat Celcius ingat suhu harus jalan 8 k kita + dengan 273 maka disini kita menjadi 300 k yang di sini jadi 400 k kemudian perbandingan antara massa gas yang keluar dari tabung dan massa awalnya disini kita asumsikan tekanan gas nya sama dan juga volume gas yang sama yaitu sama 1 liter gas yang mengalir sama maka Mr X sudah pasti sama berarti langsung saja kita masuk ke persamaannya maka disini bisa kita Tuliskan untuk p 1 dikali 1 per 1 dikali dengan suhu 1 = p 2 * V2 per 2 dikali T 2 karena di sini konstan dan diketahui tekanan dan volume sama bisa langsung kita coret males nulis ini menjadi 1 per 1 dikali dengan t satunya adalah 300 k = 1 per m2 * T 2 nya adalah 400 k ini m2 dan M1 nya kita ganti lama kita bersin M2 per 300 = 1 per 400 ini yang ini kita kalikan silang Nah maka kita dapat disini untuk M2 per M1 = 300 per 400 adalah di sini bisa kita coret maka kita dapat 2 per 1 = 3 per 4 maka disini kita dapat tuh M2 nya = 3 per 4 dikali dengan M1 di sini kan M2 adalah masa di dalam tabung saat suhu 127 derajat Celcius M 1 lah masa di dalam tabung saat suhu 27 derajat Celcius perbandingan antara massa gas yang keluar berarti kalau mau mencari massa gas yang keluar otomatis di sini kita cari perubahan massanya perubahan masa sebelum dan sesudah dipanaskan berarti di sini untuk Delta m. = massa gas sebelum latihan 1 dikurang massa gas itu dipanaskan itu M2M satunya di sini itu tetap 1 dikurang M2 nya adalah 3 per 4 dikali M 1, maka kita yang keluar di sini = seperempat X M1 selesai makan di sini Perbandingan massa gas yang keluar dan massa awalnya berarti sini perbandingan antara Delta m banding masalah adalah jam M 1 banding M1 adalah tetap M1 nah disini kita bagi kedua ruas dengan 1 berarti yang satunya bisa kita coret maka kita dapat perbandingan adalah 1 banding 4 karena 4 eh kita kalikan keras yang kanan berarti Perbandingan massa gas yang keluar dari tabung dan massa awal adalah 1 banding 4 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Rangkuman Materi Teori Kinetik Gas oke temen-temen, mungkin kalian sudah tidak asing dengan materi kali ini. sebelumnya pada kelas 10 kita telah mengenal materi ini pada mata pelajaran kimia. namun jangan salah, bab ini ternyata juga diajarkan di fisika. sebenarnya tidak berbeda jauh sih dengan apa yang terdapat pada buku kimia, namun pada mapel fisika teori kinetik gas mencakup lebih luas dan berkaitan dengan beberapa gaya yang berhubungan. yukk langsung saja ya . . Sifat-Sifat Gas Ideal 1. Berlaku hukum Newton tentang gerak 2. Partikel gas selalu bergerak secara acak atau sembarangan. 3. Tidak ada gaya tarik menarik/interaksi antarmolekul. 4. Ukuran molekul gas dapat diabaikan terhadap ukuran ukuran ruangan tempat gas berada. 5. partikel gas terdistribusi merata dalam ruangan. 6. Tumbukan antar partikel bersifat lenting sempurna. Hukum-hukum tentang Gas Hukum Boyle “pada suhu yang dibuat tetap, perkalian tekanan dan volume selalu konstan/tetap”. Sehingga berlaku persamaan berikut PV = konstan P1V1 = P2V2 Hukum Charles “pada tekanan yang dibuat tetap, hasil bagi volume terhadap suhu akan selalu bernilai konstan/tetap”. atau Hukum gay-lussac “pada volume yang dibuat tetap, hasil bagi tekanan terhadap suhu akan selalu bernilai konstan/tetap “. atau Hukum boyle-gay lussac merupakan gabungan dari hukum boyle ,hokum charles , dan hokum gay lussac .di dapat persamaan berikut Keterangan P1= Tekanan awal N/m2 P2=Tekanan akhir N/m2 V1=Volume awalm3 V2=Volume akhir m3 T1=Suhu awal K T2=suhu akhir K Persamaan umum gas ideal Dirumuskan sebagai berikut PV = NkT atau PV = nRT Keterangan P = tekanan gas ideal N/m2 V = volume gas idealm3 N = jumlah molekul zat n = jumlah mol k = konstanta Boltzmanndimana k = 1,38 x 10-23J/K R = konsanta gas umum dimana R=8,31J/Mol K T = suhu gas ideal K mol zat n dapat ditentukan dengan persamaan. Keterangan N = jumlah molekul zat NA=bilangan Avogadro 6,02 x 1023 partikel m= massa partikel gas gram Mr=massa relatif molekul gas Hubungan Kecepatan Partikel Gas, Energi Kinetik Dan Tekanan Dalam gas ideal tekanan , suhu, dan kecepatan dapat ditentukan dengan persamaan berikut. Energi kinetik Tekanan gas Suhu gas Kecepatan efektif Keterangan N = jumlah partikel zat EK = energi kinetik rata-rataJ M0 = massa partikel gas kg Mr = massa molekul relatif kg/mol ρ = massa jenis gas idealkg/m3 k = konstanta Boltzmanndimana k = 1,38 x 10-23J/K R = konsanta gas umum dimana R=8,31J/Mol K T = suhu kelvin Energi Dalam yaitu energi kinetik partikel gas yang terdapat di dalam suatu ruang tertutup U = = Nf½ KT Keterangan N =jumlah partikel Ek = energi kinetik f = derajat kebebasan 1. Gas monoatomicf=3 seperti He , Ne, dan Ar 2. Gas diatomi seperti H2,O2,N2 Suhu rendah T = ±250k , f=3 Suhu rendah T = ±500k, f=5 Suhu tinggi T= ± 1000 k , f=7 Contoh Soal dan Pembahasan Teori Kinetik Gas Soal No. 1 16 gram gas Oksigen M = 32 gr/mol berada pada tekanan 1 atm dan suhu 27oC. Tentukan volume gas jika a diberikan nilai R = 8,314 J/ b diberikan nilai R = 8314 J/ Pembahasan a untuk nilai R = 8,314 J/ Data R = 8,314 J/ T = 27oC = 300 K n = 16 gr 32 gr/mol = 0,5 mol P = 1 atm = 105 N/m2 b untuk nilai R = 8314 J/ Data R = 8314 J/ T = 27oC = 300 K n = 16 gr 32 gr/mol = 0,5 mol P = 1 atm = 105 N/m2 Soal No. 2 Gas bermassa 4 kg bersuhu 27oC berada dalam tabung yang berlubang. Jika tabung dipanasi hingga suhu 127oC, dan pemuaian tabung diabaikan tentukan a massa gas yang tersisa di tabung b massa gas yang keluar dari tabung c perbandingan massa gas yang keluar dari tabung dengan massa awal gas d perbandingan massa gas yang tersisa dalam tabung dengan massa awal gas e perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung Pembahasan Data Massa gas awal m1 = 4 kg Massa gas tersisa m2 Massa gas yang keluar dari tabung Δ m = m2 − m1 a massa gas yang tersisa di tabung b massa gas yang keluar dari tabung c perbandingan massa gas yang keluar dari tabung dengan massa awal gas d perbandingan massa gas yang tersisa dalam tabung dengan massa awal gas e perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung Soal No. 3 A dan B dihubungkan dengan suatu pipa sempit. Suhu gas di A adalah 127oC dan jumlah partikel gas di A tiga kali jumlah partikel di B. Jika volume B seperempat volume A, tentukan suhu gas di B! Pembahasan Data TA = 127oC = 400 K NA NB = 2 1 VA VB = 4 1 NEXT PAGE 1 2 3
Jawabanperbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung adalah 1 massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung adalah 1 Ditanya Perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung? Jawab Dengan menggunakan persamaan umum gas ideal, maka diperoleh massa gas yang tersisa dalam tabung sebagai berikut. Pemuaian tabung diabaikan, maka V 1 = V 2 Perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung Dengan demikian, perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung adalah 1 Ditanya Perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung ? Jawab Dengan menggunakan persamaan umum gas ideal, maka diperoleh massa gas yang tersisa dalam tabung sebagai berikut. Pemuaian tabung diabaikan, maka V1 = V2 Perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung Dengan demikian, perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung adalah 1 3.
massa gas yang keluar dari tabung